A proof of the Nisan-Ronen Conjecture

STOC 2023

Giorgos Christodoulou

Aristotle University of Thessaloniki, Greece

Elias Koutsoupias

University of Oxford, UK

Annamária Kovács

Goethe University, Frankfurt M., Germany

Unrelated Scheduling

 t_{ij} : running time of job j on machine i

Unrelated Scheduling

 t_{ij} : running time of job j on machine i

Output: $x_{ij} \in \{0,1\}$ an allocation of jobs to machines that minimizes the makespan

$$makespan = \max_{i} finish time_{i}$$

Truthful scheduling algorithms

- We are interested only in *weakly monotone (WMON)* scheduling algorithms.
- Exactly these can be complemented by payments to the machines...
- ...so that each machine *i* reports the running times *t_{ij} truthfully* even if these are private information [Saks, Yu EC05, Bikhchandani et Al. *Econometrica* 2006]
- weakly mon. algorithm + truthful payment = truthful mechanism

<u>Definition</u>: The scheduling algorithm is *weakly monotone*, if for every machine *i*, for every fixed bids of the other machines, for any two bid vectors $(t_{ij})_{j \in [m]}, (t'_{ij})_{j \in [m]}$ and the corresponding allocations $x \neq x'$ holds that $\sum_{i=1}^{m} (x'_{ij} - x_{ij}) \cdot (t'_{ij} - t_{ij}) \leq 0$.

The Vickrey-Clarke-Groves (VCG) mechanism

• the simplest truthful mechanism gives each task independently to the fastest machine for that task

• VCG is *n*-approximative for makespan minimization

The Nisan-Ronen conjecture

No truthful mechanism for unrelated scheduling can have a better than *n* approximation of the optimal makespan (indep. of computational power). [STOC'99, *Games and Economic behavior* 2001]

Lower bounds for truthful makespan approximation:

2[Nisan, Ronen 1999] $1 + \sqrt{2}$ [Christodoulou, Koutsoupias, Vidali Algorithmica 2009] $1 + \varphi \approx 2.618$ [Koutsoupias, Vidali Algorithmica 2012]n for anonymous mechanisms[Ashlagi, Dobzinski, Lavi Math.Op.Res. 2012]2.755[Giannakopoulos, Hammerl, Poças SAGT20]3[Dobzinski, Shaulker 2020] $\sqrt{n-1}+1$ [Christodoulou, Koutsoupias, K. FOCS21]

<u>**Our result:**</u> No truthful mechanism for unrelated scheduling with n machines has better than n approx. factor for the makespan objective.

Preliminaries I – graph and multigraph inputs

• we allow only 2 machines for each task:

• the tasks can be modelled as edges, and machines as vertices of a graph

most of our tasks will have a 0 value on one of their machines (trivial tasks)

Preliminaries II – weak monotonicity

the geometry of WMON allocations

(here for the *t*-player and 2 tasks, fixed mechanism, fixed input of other machines)

• the boundary ψ_j is the highest t_j value (supremum) that still receives task j

Proof sketch

Recall: ψ_j is the highest t_j value that player 0 still receives task j

0.	[0	0		ψ_{j}		0	= t
1.	1	∞		∞		∞	<i>s</i> 1
2.	∞	1		∞		∞	<i>s</i> 2
	÷		÷.,			:	
:	÷			1		÷	E E
:	:				۰.	:	÷
n.	∞	∞	∞	∞	∞	1	s _n

Idea: Prove the existence of such a (partial) input so that...

A. $\sum_{j=1}^{n} \psi_j \ge n$

Proof sketch

Recall: ψ_j is the highest t_j value that still receives task j

0.	ψ_1	ψ_2		ψ_{j}		ψ_{n}]	= t
1.	1	∞		∞		∞		<i>s</i> 1
2.	∞	1		∞		\sim		<i>s</i> 2
:	÷		۰.			:		÷
:	:			1		:		÷
: : :	:				۰.	:		÷
n.	∞	∞	∞	∞	∞	1		sn

Idea: Prove the existence of such a (partial) input so that...

A. $\sum_{j=1}^{n} \psi_j \ge n$

B. and setting ψ_j for all j at once, player 0 still gets all tasks

Then: $ALG = \sum_{j=1}^{n} \psi_j \ge n$, OPT = 1

Part A: prove existence of tasks with $\sum_{i} \psi_{i} \ge n$

• consider boundary ψ_j as function of s_j

• assume first
$$\psi_j(s_j) = c \cdot s_j$$

Part A: prove existence of tasks with $\sum_{i} \psi_{i} \ge n$

• consider boundary ψ_j as function of s_j

• assume first
$$\psi_j(s_j) = c \cdot s_j$$

$$ullet$$
 then $\psi_j^{-1}(t_j)=\,t_j/c,$ and ...

Part A: prove existence of tasks with $\sum_{i} \psi_{i} \ge n$

• consider boundary ψ_j as function of s_j

• assume first
$$\psi_j(s_j) = c \cdot s_j$$

• then
$$\psi_j^{-1}(t_j)=\,t_j/c,$$
 and ...

$$\psi_j(1) + \psi_j^{-1}(1) = c + rac{1}{c} \ge 2.$$

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \ge n$ Rough idea:

• use a task for each pair of n+1 machines

- modelling tasks as edges of a graph: previously star, now clique
- Sum up every $\psi_{ij}(1)$

$$\sum_{i}\sum_{j\neq i}\psi_{ij}(1)=\sum_{i,j\mid i\neq j}(\psi_{ij}(1)+\psi_{ji}(1))\geq \binom{n+1}{2}\cdot 2=n\cdot(n+1)$$

 \Rightarrow \exists machine i with $\sum_{j
eq i} \psi_{ij}(1) \geq n$

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \ge n$

Idea: integral

$$\int_0^1 (\psi_{ij} + \psi_{ji}) \, dz \, \geq \, 1 = \, \int_0^1 \, 2z \, dz$$

$$\Rightarrow \exists z \quad (\psi_{ij} + \psi_{ji})(z) \ge 2z$$
(mean value theorem)

 $\Rightarrow \exists z \in (0,1] \text{ and } \exists \text{ machine } i \text{ such that}$ $\sum_{j \mid j \neq i} \psi_{ij}(z) \ge n \cdot z$ w.l.o.g. machine i = 0

Problem: As we change these tasks to $s_j = z$, the boundary functions ψ_{0j} change.

Idea: multi-clique

- use exp. many parallel tasks (edges) allover in the clique;
- fix task values for each edge to independent random z ∈ (0, 1] and randomly to 0 ↔ z or to z ↔ 0; these tasks are trivial and OPT = 0
- round down each $\psi^{\rm e}_{ij}$ to one of finitely many step-functions;
- many parallel edges e between i and j have the same ψ^e_{ij} by pigeonhole; for each machine pair i, j consider only these edges and a single ψ_{ij};
- choose $z \in (0, 1]$ and machine *i* like above;
- many of the parallel edges will have value 0 for *i*, and the chosen *z* as fixed random value...
- ... given that ψ^e_{ji} and the values of *parallel* tasks are independent

We have shown existence of a machine and tasks with $\sum_j \psi_j(z) \geq n \cdot z$

We call such a task set a *nice star*

Part B: But why can we set them to ψ_j at once?

Good and bad examples:

Part B: change every 0 to ψ_j at once!

<u>Theorem</u>: If we have exp. many parallel tasks (edges) for each machine *j* in a *multistar*, then it contains a star which is a box (unless *approx* = ∞).

- for each machine j we need many parallel tasks with the same ψ_j and allover the same z
- by the above Theorem there exists a star which is a box, and we obtain:

$$ALG \ge \sum_{j} \psi_j(z) \ge n \cdot z, \qquad OPT = z, \qquad approx \ge n$$

Sketch of proof

<u>Theorem</u>: If we have exp. many parallel tasks (edges) for each machine *j* in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)

Sketch of proof

<u>Theorem</u>: If we have exp. many parallel tasks (edges) for each machine *j* in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)

in the 'blue' points, if ψ_k(s_k) were linear function, then it would have a non-box subset for some s_k

<u>Theorem</u>: If we have exp. many parallel tasks (edges) for each machine *j* in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)

- in the 'blue' points, if ψ_k(s_k) were linear function, then it would have a non-box subset for some s_k
- \Rightarrow since $\psi_k(s_k)$ nonlinear, the allocation of task k is independent of $t_{k'}$ of every parallel task k'

Sketch of proof

<u>Theorem</u>: If we have exp. many parallel tasks (edges) for each machine *j* in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

- induction on the number of satellites k = 2, ..., n;
- we use that *all* truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)

- in the 'blue' points, if \u03c6_k (s_k) were linear function, then it would have a non-box subset for some s_k
- ⇒ since $\psi_k(s_k)$ nonlinear, the allocation of task k is independent of $t_{k'}$ of every parallel task k'
- $\Rightarrow \{1, 2, \dots, k'\}$ is a box
- \Rightarrow the multistar contains plenty of stars that are boxes

Thank you!