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Unrelated Scheduling

Input: m tasks
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Introduction

Unrelated Scheduling

Input: m tasks
t1n  ti2 tim
) tr1  ta2 tom
n machines ]
th1 tn2 thm

tjj : running time of job j on machine i

Output:  x; € {0,1} an allocation of jobs to machines that minimizes the
makespan

makespan = max finish time;
1
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Truthful scheduling algorithms

o We are interested only in weakly monotone (WMON) scheduling algorithms.

Exactly these can be complemented by payments to the machines...

...s0 that each machine i reports the running times t; truthfully even if these
are private information [saks, Yu EC05, Bikhchandani et Al Econometrica 2006]

weakly mon. algorithm + truthful payment = truthful mechanism

Definition: The scheduling algorithm is weakly monotone, if for every machine i, for
every fixed bids of the other machines, for any two bid vectors (t;)jcm), (t;)je(m and

the corresponding allocations x # x’ holds that > 7, (x; — x) - (tj — t;) < 0.



Introduction

The Vickrey-Clarke-Groves (VCG) mechanism

e the simplest truthful mechanism gives each task

independently to the fastest machine for that task

(17 17 17 17 e 17
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

11 11 1]

e VCG is n-approximative for makespan minimization



The Nisan-Ronen conjecture

No truthful mechanism for unrelated scheduling can have a better than n
approximation of the optimal makespan (indep. of computational power).
[STOC'99, Games and Economic behavior 2001]

Lower bounds for truthful makespan approximation:

2 [Nisan, Ronen 1999]
1+ \/5 [Christodoulou, Koutsoupias, Vidali Algorithmica 2009]
14+ ¢p~20618 [Koutsoupias, Vidali Algorithmica 2012]
n for anonymous mechanisms [Ashlagi, Dobzinski, Lavi Math.Op.Res. 2012]
2.755 [Giannakopoulos, Hammerl, Pogas SAGT20]
3 [Dobzinski, Shaulker 2020]
Vn—1+1 [Christodoulou, Koutsoupias, K. FOCS21]

Our result: No truthful mechanism for unrelated scheduling with n

machines has better than n approx. factor for the makespan objective.
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Preliminaries

Preliminaries | — graph and multigraph inputs

e we allow only 2 machines for each task:

0 0 O 0 =t 0

1 1 s1

2 1 S 1 4
n 1 Sn 2 3

e the tasks can be modelled as edges, and machines as vertices of a graph

e most of our tasks will have a 0 value on one of their machines (trivial tasks)



Preliminaries

Preliminaries || — weak monotonicity

e the geometry of WMON allocations
(here for the t-player and 2 tasks, fixed mechanism, fixed input of other machines)

[P

e the boundary 1); is the highest t; value (supremum) that still receives task j
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Proof sketch

Recall: ; is the highest t; value that player O still receives task j
o. [0 O (F 0 7 =t
1. 1 s1
2 ]‘ )
1
n. i 1 ] sn
Idea:  Prove the existence of such a (partial) input so that...

A. 2;21 Y >n



Proof sketch

Recall: ); is the highest t; value that still receives task j
0. [ wl w2 ’(/}J wn i =t
1. 1 s1
2. 1 52
1
n. i 1 sn
Idea:  Prove the existence of such a (partial) input so that...
n
A. E:j:1 Y >n

B. and setting ; for all j at once, player O still gets all tasks

Then: ALG = Y77 4 > n, OPT =1
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Sketch of proof

Part AZ prove existence of tasks with Zj Yj > n

1

e consider boundary v; as function of s;

e assume first 1;(s;) = c-s;

1

[0 0 0 4ls)

0 0 07

=t
S1

Sn

Vi (s7)

1

s gets task

t gets task j
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Sketch of proof

Part AZ prove existence of tasks with Zj Yj > n

[0 0 0 w(s)
1
1

e consider boundary v; as function of s;
e assume first 1;(s;) = c-s;

e then 1/11-_1(151-) = tj/c, and ...

0 0 07

=t
S1

Sn

Zj

Vi (s7)

s gets task

1

1 gets task j
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Sketch of proof

Part AZ prove existence of tasks with Zj Yj > n

[0 0 0 4(s) 0 0 0] =t [0 00 t 00 07
1 51 1
1 : 1
1 ' 1
5 )
1 1
1 1
L 1 Sn L 1]
e consider boundary v; as function of s;
il
e assume first 1;(s;) = c-s;
\lj(sj) s gets task
o then 1/,]_—1(@.) = tj/c, and ... | ¢ gets task
[ ] 1 ;
wj(l)‘F?/}j_l(l) =c 4+ - > 2. 1 S
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Sketch of proof

Part A: prove existence of tasks with Zj Yj > n
Rough idea:

e use a task for each pair of n+ 1 machines

2 2

e modelling tasks as edges of a graph: previously star, now clique
e Sum up every (1)

S w0 = 3 Ws1) + (1) > (”;1) D—n(nt1)

i A ijli#i

= 3 machine i with >, (1) > n
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Sketch of proof

Part A: prove existence of tasks with Zj Y >n

Problem: ; is not linear

Idea: integral

1 . 1
v ‘ = /0(¢U+¢ji)d221:/0 2z dz

A = 3z (P +v)(z) > 2z

! < (mean value theorem)
= Jz € (0,1] and 3 machine i such that 0 0 ¥i(z) 0 0
> Ui(z)zn-z :
Jli#i z
z
w.l.0o.g. machine =0 z
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Sketch of proof

Problem: As we change these tasks to s; = z, the boundary functions 1g; change.

Idea: multi-clique
e use exp. many parallel tasks (edges) allover in the clique;
v o
N @
e fix task values for each edge to independent random
z € (0,1] and randomly to 0 <— z or to z <— 0;
these tasks are trivial and OPT =0
ON\
° 3 e round down each ¢ to one of finitely many
step-functions;

e many parallel edges e between i and j have the same 97 by pigeonhole;
for each machine pair 7, j consider only these edges and a single 1;;;

e choose z € (0, 1] and machine i like above;

e many of the parallel edges will have value 0 for 7, and the chosen z as fixed
random value...

e ... given that ¥} and the values of parallel tasks are independent
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Sketch of proof

We have shown existence of a machine and tasks with >_;1;(z) > n-z

We call such a task set a nice star

0]

[0
zZ

o ... 0

z

0i(z) a(z) o i(2)

Part B: But why can we set them to v); at once?

Good and bad examples:
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Sketch of proof

Part B: change every 0 to 1; at once!

Theorem: If we have exp. many parallel tasks (edges) for each machine j

in a multistar, then it contains a star which is a box (unless approx = o).

000 ¢ 00 ¢» 000 -~ 0 % 0 0 0
z z zZ zZ Z
z z zZ zZ Z

e for each machine j we need many parallel tasks with the same ); and
allover the same z

e by the above Theorem there exists a star which is a box, and we obtain:

ALG > ij(z) >n-z, OPT = z, approx > n
J
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Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,

then it contains a star which is a box (or approx = o).
Proof (intuition):
e induction on the number of satellites k = 2,...,n;
e we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

e induction step (k — 1) — k: assume {1,2,...,k} is not a box (only its subsets)

ti

ty

ta
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Sketch of proof

Theorem:

then it contains a star which is a box (or approx = o).

Proof (intuition):

e induction on the number of satellites k = 2,...,n;

If we have exp. many parallel tasks (edges) for each machine j in a multistar,

e we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

e induction step (k — 1) — k: assume {1,2,...,k} is not a box (only its subsets)
tk t B
e — —
51 t1 t1
Ve Ve
tr ta t

> in the 'blue’ points, if 1x(sk) were linear function, then it would have a
non-box subset for some s
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Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,
then it contains a star which is a box (or approx = o).
Proof (intuition):

e induction on the number of satellites k = 2,...,n;

e we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

e induction step (k — 1) — k: assume {1,2,..., k} is not a box (only its subsets)

(5]

[

tk/

> in the 'blue’ points, if 1x(sk) were linear function, then it would have a
non-box subset for some sy
= since 1k(sk) nonlinear, the allocation of task k is independent of t,/ of every
parallel task k’
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Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,
then it contains a star which is a box (or approx = o).
Proof (intuition):

e induction on the number of satellites k = 2,...,n;

e we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

e induction step (k — 1) — k: assume {1,2,..., k} is not a box (only its subsets)

(5]

[

tk/

> in the 'blue’ points, if 1x(sk) were linear function, then it would have a
non-box subset for some sy
= since 1k(sk) nonlinear, the allocation of task k is independent of t,/ of every
parallel task k’
{1,2,...,k'} is a box
the multistar contains plenty of stars that are boxes 22/23
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Sketch of proof

Thank you!
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