A proof of the Nisan-Ronen Conjecture

$$
\text { STOC } 2023
$$

Giorgos Christodoulou

Aristotle University of Thessaloniki, Greece

Elias Koutsoupias

University of Oxford, UK
Annamária Kovács
Goethe University, Frankfurt M., Germany

Unrelated Scheduling

Input:

n machines $\quad\left[\right.$| | m tasks | | |
| :---: | :---: | :---: | :---: |
| t_{11} | t_{12} | \cdots | $t_{1 m}$ |
| t_{21} | t_{22} | \cdots | $t_{2 m}$ |
| \vdots | \vdots | | \vdots |
| $t_{n 1}$ | $t_{n 2}$ | \cdots | $t_{n m}$ |$]$

$t_{i j}$: running time of job j on machine i

Unrelated Scheduling

Input:
n machines $\left[\begin{array}{cccc}t_{11} & t_{12} & \cdots & t_{1 m} \\ t_{21} & t_{22} & \cdots & t_{2 m} \\ \vdots & \vdots & & \vdots \\ t_{n 1} & t_{n 2} & \cdots & t_{n m}\end{array}\right]$
$t_{i j}$: running time of job j on machine i

Output: $\quad x_{i j} \in\{0,1\}$ an allocation of jobs to machines that minimizes the makespan

$$
\text { makespan }=\max _{i} \text { finish time } i
$$

Truthful scheduling algorithms

- We are interested only in weakly monotone (WMON) scheduling algorithms.
- Exactly these can be complemented by payments to the machines...
- ...so that each machine i reports the running times $t_{i j}$ truthfully even if these are private information [Saks, Yu EC05, Bikhchandani et Al. Econometrica 2006]
- weakly mon. algorithm + truthful payment $=$ truthful mechanism

Definition: The scheduling algorithm is weakly monotone, if for every machine i, for every fixed bids of the other machines, for any two bid vectors $\left(t_{i j}\right)_{j \in[m]},\left(t_{i j}^{\prime}\right)_{j \in[m]}$ and the corresponding allocations $x \neq x^{\prime}$ holds that $\sum_{j=1}^{m}\left(x_{i j}^{\prime}-x_{i j}\right) \cdot\left(t_{i j}^{\prime}-t_{i j}\right) \leq 0$.

The Vickrey-Clarke-Groves (VCG) mechanism

- the simplest truthful mechanism gives each task independently to the fastest machine for that task

$$
\left[\begin{array}{cccccc}
\mathbf{1}^{-} & \mathbf{1}^{-} & \mathbf{1}^{-} & \mathbf{1}^{-} & \cdots & \mathbf{1}^{-} \\
1 & 1 & 1 & 1 & & 1 \\
1 & 1 & 1 & 1 & & 1 \\
1 & 1 & 1 & 1 & & 1 \\
\vdots & & & & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

- VCG is n-approximative for makespan minimization

The Nisan-Ronen conjecture

No truthful mechanism for unrelated scheduling can have a better than n approximation of the optimal makespan (indep. of computational power). [STOC'99, Games and Economic behavior 2001]

Lower bounds for truthful makespan approximation:
2
[Nisan, Ronen 1999]
$1+\sqrt{2}$
$1+\varphi \approx 2.618$
n for anonymous mechanisms
2.755

3
$\sqrt{n-1}+1$
[Christodoulou, Koutsoupias, Vidali Algorithmica 2009]
[Koutsoupias, Vidali Algorithmica 2012]
[Ashlagi, Dobzinski, Lavi Math.Op.Res. 2012]
[Giannakopoulos, Hammerl, Poças SAGT20]
[Dobzinski, Shaulker 2020]
[Christodoulou, Koutsoupias, K. FOCS21]

Our result: No truthful mechanism for unrelated scheduling with n machines has better than n approx. factor for the makespan objective.

Preliminaries I - graph and multigraph inputs

- we allow only 2 machines for each task:

- the tasks can be modelled as edges, and machines as vertices of a graph
- most of our tasks will have a 0 value on one of their machines (trivial tasks)

Preliminaries II - weak monotonicity

- the geometry of WMON allocations
(here for the t-player and 2 tasks, fixed mechanism, fixed input of other machines)

- the boundary ψ_{j} is the highest t_{j} value (supremum) that still receives task j

Proof sketch

Recall:

ψ_{j} is the highest t_{j} value that player 0 still receives task j
0.
1.
2.
\vdots
\vdots
\vdots
n\(\quad\left[\begin{array}{cccccc}0 \& 0 \& ··· \& \psi_{j} \& ··· \& 0

1 \& \infty \& \cdots \& \infty \& \cdots \& \infty

\infty \& 1 \& \cdots \& \infty \& \cdots \& \infty

\vdots \& \& \ddots \& \& \& \vdots

\vdots \& \& \& 1 \& \& \vdots

\vdots \& \& \& \& \ddots \& \vdots

\infty \& \infty \& \infty \& \infty \& \infty \& 1\end{array}\right] \quad\)| $=t$ |
| :---: |
| s_{1} |
| s_{2} |
| \vdots |
| \vdots |
| \vdots |
| s_{n} |

Idea: Prove the existence of such a (partial) input so that...
A. $\quad \sum_{j=1}^{n} \psi_{j} \geq n$

Proof sketch

Recall: $\quad \psi_{j}$ is the highest t_{j} value that still receives task j

Idea: Prove the existence of such a (partial) input so that...
A. $\quad \sum_{j=1}^{n} \psi_{j} \geq n$
B. and setting ψ_{j} for all j at once, player 0 still gets all tasks

Then: $\quad A L G=\sum_{j=1}^{n} \psi_{j} \geq n, \quad O P T=1$

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \geq n$

\(\left[\begin{array}{ccccccc}0 \& 0 \& 0 \& \psi_{j}\left(s_{j}\right) \& 0 \& 0 \& 0

1 \& \& \& \& \& \&

\& 1 \& \& \& \& \&

\& \& 1 \& \& \& \&

\& \& \& s_{j} \& \& \&

\& \& \& \& 1 \& \&

\& \& \& \& \& 1 \&

\& \& \& \& \& \& 1\end{array}\right] \quad\)| $=t$ |
| :---: |
| \vdots |
| \vdots |
| |
| s_{n} |

- consider boundary ψ_{j} as function of s_{j}
- assume first $\psi_{j}\left(s_{j}\right)=c \cdot s_{j}$

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \geq n$

$\left.\left[\begin{array}{ccccccc}0 & 0 & 0 & \psi_{j}\left(s_{j}\right) & 0 & 0 & 0 \\ 1 & & & & & & \\ & 1 & 1 & & & & \\ & & 1 & s_{j} & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & 1\end{array}\right] \quad \begin{array}{ccccccc}=t \\ s_{1} \\ \vdots \\ 1 & 0 & 0 & t_{j} & 0 & 0 & 0 \\ & 1 & & & & & \\ & & 1 & & & \\ & & & \psi^{-1}\left(t_{j}\right) & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & 1\end{array}\right]$

- consider boundary ψ_{j} as function of s_{j}
- assume first $\psi_{j}\left(s_{j}\right)=c \cdot s_{j}$
- then $\psi_{j}^{-1}\left(t_{j}\right)=t_{j} / c$, and \ldots

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \geq n$

$\left.\left[\begin{array}{ccccccc}0 & 0 & 0 & \psi_{j}\left(s_{j}\right) & 0 & 0 & 0 \\ 1 & & & & & & \\ & 1 & 1 & & & & \\ & & 1 & s_{j} & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & 1\end{array}\right] \quad \begin{array}{ccccccc}=t \\ s_{1} \\ \vdots \\ 1 & 0 & 0 & t_{j} & 0 & 0 & 0 \\ & 1 & & & & & \\ & & 1 & & & \\ & & & \psi^{-1}\left(t_{j}\right) & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & 1\end{array}\right]$

- consider boundary ψ_{j} as function of s_{j}
- assume first $\psi_{j}\left(s_{j}\right)=c \cdot s_{j}$
- then $\psi_{j}^{-1}\left(t_{j}\right)=t_{j} / c$, and \ldots

$$
\psi_{j}(1)+\psi_{j}^{-1}(1)=c+\frac{1}{c} \geq 2
$$

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \geq n$

Rough idea:

- use a task for each pair of $n+1$ machines

- modelling tasks as edges of a graph: previously star, now clique
- Sum up every $\psi_{i j}(1)$

$$
\sum_{i} \sum_{j \neq i} \psi_{i j}(1)=\sum_{i, j \mid i \neq j}\left(\psi_{i j}(1)+\psi_{j i}(1)\right) \geq\binom{ n+1}{2} \cdot 2=n \cdot(n+1)
$$

$\Rightarrow \quad \exists$ machine i with $\quad \sum_{j \neq i} \psi_{i j}(1) \geq n$

Part A: prove existence of tasks with $\sum_{j} \psi_{j} \geq n$

Problem: $\quad \psi_{i j}$ is not linear

Idea: integral

$$
\begin{aligned}
& \int_{0}^{1}\left(\psi_{i j}+\psi_{j i}\right) d z \geq 1=\int_{0}^{1} 2 z d z \\
\Rightarrow & \exists z \quad\left(\psi_{i j}+\psi_{j i}\right)(z) \geq 2 z \\
& \quad(\text { mean value theorem })
\end{aligned}
$$

$\Rightarrow \exists z \in(0,1]$ and \exists machine i such that

$$
\sum_{j \mid j \neq i} \psi_{i j}(z) \geq n \cdot z
$$

w.l.o.g. machine $i=0$
$\left[\begin{array}{lllll}0 & 0 & \psi_{j}(z) & 0 & 0 \\ z & & & & \\ & z & & & \\ & & z & & \\ & & & z & \\ & & & & z\end{array}\right]$

Problem: As we change these tasks to $s_{j}=z$, the boundary functions $\psi_{0 j}$ change.
Idea: multi-clique

- use exp. many parallel tasks (edges) allover in the clique;
- fix task values for each edge to independent random $z \in(0,1]$ and randomly to $0 \longleftrightarrow z$ or to $z \longleftrightarrow 0$; these tasks are trivial and OPT $=0$
- round down each $\psi_{i j}^{e}$ to one of finitely many step-functions;
- many parallel edges e between i and j have the same $\psi_{i j}^{e}$ by pigeonhole; for each machine pair i, j consider only these edges and a single $\psi_{i j}$;
- choose $z \in(0,1]$ and machine i like above;
- many of the parallel edges will have value 0 for i, and the chosen z as fixed random value...
- ... given that $\psi_{i j}^{e}$ and the values of parallel tasks are independent

We have shown existence of a machine and tasks with $\sum_{j} \psi_{j}(z) \geq n \cdot z$ We call such a task set a nice star
$\left[\begin{array}{llllll}0 & 0 & \ldots & 0 & \ldots & 0 \\ z & & & & & \\ & z & & & \\ & & \ddots & & \\ & & & z & & \\ & & & & \ddots & \\ & & & & & z\end{array}\right] \rightarrow\left[\begin{array}{cccccc}\psi_{1}(z) & \psi_{2}(z) & \ldots & \psi_{j}(z) & \ldots & \psi_{n}(z) \\ z & z & & & & \\ & & \ddots & & & \\ & & & z & & \\ & & & & \ddots & \\ & & & & & z\end{array}\right]$

Part B: But why can we set them to ψ_{j} at once?

Good and bad examples:

box

non-box

box

Part B: change every 0 to ψ_{j} at once!

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar, then it contains a star which is a box (unless approx $=\infty$).

$$
\left[\begin{array}{lllccccccccccccc}
0 & 0 & 0 & \psi_{1} & 0 & 0 & \psi_{2} & 0 & 0 & 0 & \cdots & 0 & \psi_{\mathbf{n}} & 0 & 0 & 0 \\
z & z & z & z & z & & & & & & & & & & & \\
& & & & & z & z & z & z & z & & & & & & \\
& & & & & & & & & & \ddots & & & & & \\
& & & & & & & & & & & z & z & z & z & z
\end{array}\right]
$$

- for each machine j we need many parallel tasks with the same ψ_{j} and allover the same z
- by the above Theorem there exists a star which is a box, and we obtain:

$$
A L G \geq \sum_{j} \psi_{j}(z) \geq n \cdot z, \quad O P T=z, \quad \text { approx } \geq n
$$

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar, then it contains a star which is a box (or approx $=\infty$).
Proof (intuition):

- induction on the number of satellites $k=2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1,2, \ldots, k\}$ is not a box (only its subsets)

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar, then it contains a star which is a box (or approx $=\infty$).
Proof (intuition):

- induction on the number of satellites $k=2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1,2, \ldots, k\}$ is not a box (only its subsets)

- in the 'blue' points, if $\psi_{k}\left(s_{k}\right)$ were linear function, then it would have a non-box subset for some s_{k}

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar, then it contains a star which is a box (or approx $=\infty$).
Proof (intuition):

- induction on the number of satellites $k=2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1,2, \ldots, k\}$ is not a box (only its subsets)

- in the 'blue' points, if $\psi_{k}\left(s_{k}\right)$ were linear function, then it would have a non-box subset for some s_{k}
\Rightarrow since $\psi_{k}\left(s_{k}\right)$ nonlinear, the allocation of task k is independent of $t_{k^{\prime}}$ of every parallel task k^{\prime}

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar, then it contains a star which is a box (or approx $=\infty$).
Proof (intuition):

- induction on the number of satellites $k=2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1,2, \ldots, k\}$ is not a box (only its subsets)

- in the 'blue' points, if $\psi_{k}\left(s_{k}\right)$ were linear function, then it would have a non-box subset for some s_{k}
\Rightarrow since $\psi_{k}\left(s_{k}\right)$ nonlinear, the allocation of task k is independent of $t_{k^{\prime}}$ of every parallel task k^{\prime}
$\Rightarrow\left\{1,2, \ldots, k^{\prime}\right\}$ is a box
\Rightarrow the multistar contains plenty of stars that are boxes

Thank you!

