
Certifying Induced Subgraphs in Large Graphs

Ulrich Meyer1, Hung Tran1, and Konstantinos Tsakalidis2

1 Goethe University Frankfurt, Germany
{umeyer,htran}@ae.cs.uni-frankfurt.de
2 University of Liverpool, United Kingdom

K.Tsakalidis@liverpool.ac.uk

Abstract. We introduce I/O-e�ient certifying algorithms for bipartite
graphs, as well as for the classes of split, threshold, bipartite chain, and
trivially perfect graphs. When the input graph is a member of the respec-
tive class, the certifying algorithm returns a certi�cate that characterizes
this class. Otherwise, it returns a forbidden induced subgraph as a cer-
ti�cate for non-membership. On a graph with n vertices and m edges,
our algorithms take O(sort(n+m)) I/Os in the worst case for split,
threshold and trivially perfect graphs. In the same complexity bipartite
and bipartite chain graphs can be certi�ed with high probability. We
provide implementations for split and threshold graphs and provide a
preliminary experimental evaluation.
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1 Introduction

Certifying algorithms [13] ensure the correctness of an algorithm's output with-
out having to trust the algorithm itself. The user of a certifying algorithm in-
puts x and receives the output y with a certi�cate or witness w that proves
that y is a correct output for input x. In a subsequent step, the certi�cate can
be inspected using an authentication algorithm that considers the input, output
and certi�cate and returns whether the output is indeed correct. Certifying the
bipartiteness of a graph is a textbook example where the returned witness w
is a bipartition of the vertices (YES-certi�cate) or an induced odd-length cycle
subgraph, i.e. a cycle of vertices with an odd number of edges (NO-certi�cate).

Emerging big data applications need to process large graphs e�ciently. Stan-
dard models of computation in internal memory (RAM, pointer machine) do not
capture the algorithmic complexity of processing graphs with size that exceed
the main memory. The I/O model by Aggarwal and Vitter [1] is suitable for
studying large graphs stored in an external memory hierarchy, e.g. comprised of
cache, RAM and hard disk memories. The input data elements are stored in ex-
ternal memory (EM) packed in blocks of at most B elements and computation is
free inmain memory for at mostM elements. The I/O-complexity is measured in
I/O-operations (I/Os) that transfer a block from external to main memory and
vice versa. I/O-optimal external memory algorithms for sorting n elements take
sort(n) = O((n/B) logM/B(n/B)) I/Os and reading or writing n contiguous
items (which is referred to as scanning) requires scan(n) = O(n/B) I/Os.
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1.1 Previous Work

Certifying bipartiteness in internal memory takes linear time in the number
of edges by any traversal of the graph. However, all known external memory
breadth-�rst search [2] and depth-�rst search [4] traversal algorithms take sub-
optimal ω (sort (n+m)) I/Os for an input graph with n vertices and m edges.

Heggernes and Kratsch [10] present optimal internal memory algorithms
for certifying whether a graph belongs to the classes of split, threshold, bi-
partite chain, and trivially perfect graphs. They return in linear time a YES-
certi�cate characterizing the corresponding class or a forbidden induced sub-
graph of the class (NO-certi�cate). The YES- and NO-certi�cates are authenticated
in linear and constant time, respectively. A straightforward application to the
I/O model leads to suboptimal certifying algorithms since graph traversal algo-
rithms in external memory are much more involved and no worst-case e�cient
algorithms are known.

1.2 Our Results

We present I/O-e�cient certifying algorithms for bipartite, split, threshold, bi-
partite chain, and trivially perfect graphs. All algorithms return in the mem-
bership case, a YES-certi�cate w characterizing the graph class, or a O(1)-size
NO-certi�cate in the non-membership case. All YES-certi�cates can be authen-
ticated using O(sort(n+m)) I/Os as detailed in the full version of the paper
[14]. Additionally, we perform experiments for split and threshold graphs show-
ing scaling well beyond the size of main memory.

2 Preliminaries and Notation

For a graph G = (V,E), let n = |V | andm = |E| denote the number of vertices V
and edges E, respectively. For a vertex v ∈ V we denote byN(v) the neighborhood
of v and by N [v] = N(v) ∪ {v} the closed neighborhood of v. The degree deg(v)
of a vertex v is given by deg(v) = |N(v)|. A vertex v is called simplicial if N(v)
is a clique and universal if N [v] = V .

Graph Subgraphs and Orderings The subgraph of G that is induced by a
subset A ⊆ V of vertices is denoted by G[A]. The substructure (subgraph) of a
cycle on k vertices is denoted by Ck and of a path on k vertices is denoted by
Pk. The 2K2 is a graph that is isomorphic to the following constant size graph:
({a, b, c, d}, {ab, cd}).

Henceforth we refer to di�erent types of orderings of vertices: an order-
ing (v1, . . . , vn) is a (i) perfect elimination ordering (peo) if vi is simplicial in
G[{vi, vi+1, . . . , vn}] for all i ∈ {1, . . . , n}, and a (ii) universal-in-a-component-
ordering (uco) if vi is universal in its connected component inG[{vi, vi+1, . . . , vn}]
for all i ∈ {1, . . . , n}. For a subset X = {v1, . . . , vk}, we call (v1, . . . , vk) a nested
neighborhood ordering (nno) if (N(v1)\X) ⊆ (N(v2)\X)) ⊆ . . . ⊆ (N(vk)\X).
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Finally for any ordering, we partition N(vi) into lower and higher ranked neigh-
bors, respectively, L(vi) = {x ∈ N(vi) : vi is ranked higher than x} andH(vi) =
{x ∈ N(vi) : vi is ranked lower than x}.

Graph Representation We assume an adjacency array representation [15]
where the graph G = (V,E) is represented by two arrays P = [ Pi ]

n
i=1 and E =

[ ui ]
m
i=1. The neighbors of a vertex vi are then given by the vertices at position

P [vi] to P [vi+1]−1 in E. We use the adjacency array representation to straight-
forwardly allow for e�cient scanning of G: (i) scanning k consecutive adjacency
lists consisting of m edges requires O(scan(m)) I/Os and (ii) computing and
scanning the degrees of k consecutive vertices requires O(scan(k)) I/Os.

Time-Forward Processing Time-forward processing (TFP) is a generic tech-
nique to manage data dependencies of external memory algorithms [12]. These
dependencies are typically modeled by a directed acyclic graph G = (V,E) where
every vertex vi ∈ V models the computation of zi and an edge (vi, vj) ∈ E indi-
cates that zi is required for the computation of zj .

Computing a solution then requires the algorithm to traverse G according
to some topological order ≺T of the vertices V . The TFP technique achieves
this in the following way: after zi has been calculated, the algorithm inserts a
message 〈vj , zi〉 into a minimum priority-queue data structure for every succes-
sor (vi, vj) ∈ E where the items are sorted by the recipients according to ≺T .
By construction, vj receives all required values zi of its predecessors vi ≺T vj
as messages in the data structure. Since these predecessors already removed
their messages from the data structure, items addressed to vj are currently the
smallest elements in the data structures and thus can be dequeued with a delete-
minimum operation. By using suitable external memory priority-queues [3], TFP
incurs O(sort(k)) I/Os, where k is the number of messages sent.

3 Certifying Graph Classes in External Memory

3.1 Certifying Split Graphs in External Memory

A split graph is a graph that can be partitioned into two sets of vertices (K, I)
where K and I induce a clique and an independent set, respectively. The parti-
tion (K, I) is called the split partition. They are additionally characterized by the
forbidden induced subgraphs 2K2, C4 and C5, meaning that any vertex subset of
a split graph cannot induce these structures [9]. Since split graphs are a subclass
of chordal graphs, there exists a peo of the vertices for every split graph. In fact,
any non-decreasing degree ordering of a split graph is a peo [10].

Our algorithm adapts the internal memory certifying algorithm of Heggernes
and Kratsch [10] to external memory by adopting TFP. As output it either
returns the split partition (K, I) as a YES-certi�cate or one of the forbidden
subgraphs C4, C5 or 2K2 as a NO-certi�cate. We present the algorithm as a
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whole and refer to details in Proposition 1 and Proposition 2 at the end of the
subsection.

First, we compute a non-decreasing degree ordering α = (v1, . . . , vn) and
relabel3 the graph according to α. Thereafter we check whether α is a peo in
O(sort(n+m)) I/Os by Proposition 1. In the non-membership case, the algo-
rithm returns three vertices vj , vk, vi where {vi, vj}, {vi, vk} ∈ E but {vj , vk} /∈
E and i < j < k, violating that vi is simplicial in G[{vi, . . . , vn}]. In order to re-
turn a forbidden subgraph we �nd additional vertices that complete the induced
subgraphs. Note that (vk, vi, vj) already forms a P3 and may extend to a C4 if
N(vk) ∩ N(vj) contains a vertex z 6= vi that is not adjacent to vi. Computing
(N(vk)∩N(vj)) \N(vi) requires scanning the adjacencies of O(1) many vertices
totaling to O(scan(n)) I/Os. If (N(vk)∩N(vj))\N(vi) is empty we try to extend
the P3 to a C5 or output a 2K2 otherwise. To do so, we �nd vertices x 6= vi and
y 6= vi for which {x, vj}, {y, vk} ∈ E but {x, vk}, {y, vj} /∈ E that are also not
adjacent to vi, i.e. {x, vi}, {y, vi} /∈ E. Both x and y exist due to the ordering
α [10] and are found using O(1) scanning steps requiring O(scan(n) I/Os. If
{x, y} ∈ E then (vj , vi, vk, y, x) is a C5, otherwise G[{vj , x, vk, y}] constitutes a
2K2. Determining whether {x, y} ∈ E requires scanning N(x) and N(y) using
O(scan(n)) I/Os.

In the membership case, α is a peo and the algorithm proceeds to verify
�rst the clique K and then the independent set I of the split partition (K, I).
Note that for a split graph the maximum clique of size k must consist of the
k-highest ranked vertices in α [10] where k can be computed using O(sort(m))
I/Os by Proposition 2. Therefore, it su�ces to verify for each of the k candi-
dates vi whether it is connected to {vi+1, . . . , vn} since the graph is undirected.
For a sorted sequence of edges relabeled by α, we check this property using
O(scan(m)) I/Os. If we �nd a vertex vi ∈ {vn−k+1, . . . , vn} where {vi, vj} /∈ E
with i < j then G[{vi, . . . , vn}] already does not constitute a clique and we have
to return a NO-certi�cate. Since the maximum clique has size k, there are k ver-
tices with degree at least k − 1. By these degree constraints there must exist
an edge {vi, x} ∈ E where x ∈ {v1, . . . , vi−1} [10]. Additionally, it holds that
{x, vj} /∈ E and there exists an edge {z, vj} ∈ E where z ∈ {v1, . . . , vi−1} that
cannot be connected to x, i.e. {x, z} /∈ E [10]. Thus, we �rst scan the adjacency
lists of vi and vj to �nd x and z in O(scan(n)) I/Os and return G[{vi, vj , x, z}]
as the 2K2 NO-certi�cate. Otherwise let K = {vn−k+1, . . . , vn}.

Lastly, the algorithm veri�es whether the remaining vertices form an indepen-
dent set. We verify that each candidate vi is not connected to {vi+1, . . . , vn−k},
since the graph is undirected. For this, it su�ces to scan over n − k consecu-
tive adjacency lists in O(scan(m)) I/Os. More precisely, we scan the adjacency
lists from vn−k to v1 and in case an edge {vi, vj} where i < j ≤ n − k is
found we �nd two more vertices to again complete a 2K2. For the �rst occur-
rence of such a vertex vi, we remark that {vi+1, . . . , vn−k} and {vn−k+1, . . . , vn}
form an independent set and a clique, respectively. Therefore there exists a ver-

3 If a vertex vi has rank k in α it will be relabeled to vk. The relabeling results in an ad-
jacency array representation of the relabeled graph requiring O(sort(n+m)) I/Os.
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Algorithm 1: Recognizing Perfect Elimination in EM

Data: edges E of graph G, non-decreasing degree ordering α = (v1, . . . , vn)
Output: bool whether α is a peo, three invalidating vertices {vi, vj , vk} if not

1 Sort E and relabel according to α
2 for i = 1, . . . , n do
3 Retrieve H(vi) from E
4 if H(vi) 6= ∅ then
5 Let u be the smallest successor of vi in H(vi)
6 for x ∈ H(vi) \ {u} do
7 PQ.push(〈u, x, vi〉) // inform u of x coming from vi

8 while 〈v, vk, vj〉 ← PQ.top() where v = vi do // for each message to vi
9 if vk /∈ H(vi) then // vi does not fulfill peo property

10 return false, {vi, vj , vk}
11 PQ.pop()

12 return true

tex y ∈ K that is adjacent to x but not to vi [10]. We �nd y by scanning
N(x) and N(vi) in O(scan(n)) I/Os. To complete the 2K2 we similarly �nd
z ∈ N(y)\ (N(x)∪N(yi)) in O(scan(n)) I/Os which is guaranteed to exist [10].

Proposition 1. Verifying that a non-decreasing degree ordering α = (v1, . . . , vn)
of a graph G is a perfect elimination ordering requires O(sort(n+m)) I/Os.

Proof. We follow the approach of [8, Theorem 4.5] and adapt it to the external
memory using TFP, see Algorithm 1.

After relabeling and sorting the edges by α we iterate over the vertices in the
order given by α. For a vertex vi the set of neighbors N(vi) needs to be a clique.
In order to verify this for all vertices, for a vertex vi we �rst retrieve H(vi). Then
let u ∈ H(vi) be the smallest ranked neighbor according to α. In order for vi
to be simplicial, u needs to be adjacent to all vertices of H(vi) \ {u}. In TFP-
fashion we insert a message 〈u,w〉 into a priority-queue where w ∈ H(vi) \ {u}
to inform u of every vertex it should be adjacent to. Conversely, after sending
all adjacency information, we retrieve for vi all messages 〈vi,−〉 directed to vi
and check that all received vertices are indeed neighbors of vi.

Relabeling and sorting the edges takes O(sort(m)) I/Os. Every vertex vi
inserts at most all its neighbors into the priority-queue totaling up to O(m)
messages which requires O(sort(m)) I/Os. Checking that all received vertices
are neighbors only requires a scan over all edges since vertices are handled in
non-descending order by α. ut

Proposition 2. Computing the size of a maximum clique in a split graph re-
quires O(sort(m)) I/Os.

Proof. Note that split graphs are both chordal and co-chordal [9]. For chordal
graphs, computing the size of a maximum clique in internal memory takes linear
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Algorithm 2: Maximum Clique Size for Chordal Graphs in EM

Data: edges E of input graph G, peo α = (v1, . . . , vn)
Output: maximum clique size χ

1 Sort E and relabel according to α
2 χ← 0
3 for i = 1, . . . , n do
4 Retrieve H(vi) from E // scan E

5 if H(vi) 6= ∅ then
6 Let u be the smallest successor of vi in H(vi)
7 PQ.push(〈u, |H(vi)| − 1〉) // vi simplicial ⇒ G[N(vi)] is clique

8 S(vi)← −∞
9 while 〈v, S〉 ← PQ.top() where v = vi do
10 S(vi)← max{S(vi), S} // compute maximum over all

11 PQ.pop()

12 χ← max{χ, S(vi)}
13 return χ

time [8, Theorem 4.17] and is easily convertible to an external memory algorithm
using O(sort(m)) I/Os. To do so, we simulate the data accesses of the internal
memory variant using priority-queues to employ TFP, see Algorithm 2. Instead
of updating each S(vi) value immediately, we delay its consecutive computation
by sending a message 〈vi, S〉 to vi to inform vi, that vi is part of a clique of
size S. After collecting all messages, the overall maximum is computed and the
global value of the currently maximum clique is updated if necessary. ut

By the above description it follows that split graphs can be certi�ed using
O(sort(n+m)) I/Os which we summarize in Theorem 1.

Theorem 1. A graph G can be certi�ed whether it is a split graph or not in
O(sort(n+m)) I/Os. In the membership case the algorithm returns the split
partition (K, I) as the YES-certi�cate, and otherwise it returns an O(1)-size NO-
certi�cate.

3.2 Certifying Threshold Graphs in External Memory

Threshold graphs [6,8,11] are split graphs with the additional property that the
independent set I of the split partition (K, I) has an nno. Its corresponding
forbidden subgraphs are 2K2, P4 and C4. Alternatively, threshold graphs can
be characterized by a graph generation process: repeatedly add universal or
isolated vertices to an initially empty graph. Conversely, by repeatedly removing
universal and isolated vertices from a threshold graph the resulting graph must
be the empty graph. In comparison to certifying split graphs, threshold graphs
thus require additional steps.

First, the algorithm certi�es whether the input is a split graph. In the non-
membership case, if the returned NO-certi�cate is a C5 we extract a P4 otherwise
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we return the subgraph immediately. For the membership case, we recognize
whether the input is a threshold graph by repeatedly removing universal and
isolated vertices using the previously computed peo α in O(sort(m)) I/Os by
Proposition 3 (see below). If the remaining graph is empty, we return the inde-
pendent set I with its non-decreasing degree ordering. Note that after removing
a universal vertex vi, vertices with degree one become isolated. Since low-degree
vertices are at the front of α, an I/O-e�cient algorithm cannot determine them
on-the-�y after removing a high-degree vertex. Therefore pre-processing is re-
quired. For every vertex vi we compute the number of vertices S(vi) that become
isolated after the removal of {vi, . . . , vn}. To do so, we iterate over α in non-
descending order and check for vi with L(vi) = ∅. Since vi has no lower ranked
neighbors, it would become isolated after removing all vertices in H(vi), in par-
ticular when the successor with smallest index vj ∈ H(vi) is removed. We save
vj in a vector S and sort S in non-ascending order. The values S(vn), . . . , S(v1)
are now accessible by a scan over S to count the occurrences of each vj in
O(scan(m)) I/Os.

In the non-membership case, there must exist a P4 since the input is split and
cannot contain a C4 or a 2K2. We can delete further vertices from the remaining
graph that cannot be part of a P4. For this, let K ′ ⊂ K and I ′ ⊂ I be the
remaining vertices of the split partition. Any v ∈ K ′ where N(v) ∩ I ′ = ∅ and
any v ∈ I ′ where N(v) ∩K ′ = K ′ cannot be part of a P4 [10] and can therefore
be deleted. We proceed by considering and removing vertices of K by non-
descending degree and vertices of I by non-ascending degree. After this process,
we retrieve the highest-degree vertex v in I for which there exists {v, y} /∈ E and
{y, z} ∈ E where y ∈ K and z ∈ I [10]. Additionally, there is a neighbor w ∈ K
of v for which {w, z} /∈ E [10] and we return the P4 given by G[{v, w, y, z}].
Finding the P4 therefore only requires O(scan(n+m)) I/Os.

Proposition 3. Verifying that a non-decreasing degree ordering α = (v1, . . . , vn)
of a graph G emits an empty graph after repeatedly removing universal and iso-
lated vertices requires O(sort(n) + scan(m)) I/Os.

Proof. Generating the values S(vn), . . . , S(v1) requires a scan over all adjacency
lists in non-descending order and sorting S which takes O(sort(n) + scan(m))
I/Os. Afte pre-processing, the algorithm only requires a reverse scan over the
degrees dn, . . . , d1. We iterate over α in reverse order, where for each vi we
check whether L(vi) = ∅. If vi is not isolated it must be universal. Therefore we
compare its current degree deg(vi) with the value (n − 1) − ndel where ndel =∑n

j=j+1 S(vj). All operations take O(scan(m)) I/Os in total. ut

We summarize our �ndings for threshold graphs in Theorem 2.

Theorem 2. A graph G can be certi�ed whether it is a threshold graph or not
in O(sort(n+m)) I/Os. In the membership case the algorithm returns a nested
neighborhood ordering β as the YES-certi�cate, and otherwise it returns an O(1)-
size NO-certi�cate.
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Proof. Certifying that the input graph is a split graph requires O(sort(n+m))
I/Os by Theorem 1. If it is, we check if the input is a threshold graph directly
by checking whether the graph is empty after repeatedly removing universal and
isolated vertices in O(sort(m)) I/Os by Proposition 3. Otherwise we have to
�nd a P4, since the input is a split but not a threshold graph. Hence, this step
requires O(scan(n+m)) I/Os and the total I/Os are O(sort(n+m)). ut

3.3 Certifying Trivially Perfect Graphs in External Memory

Trivially perfect graphs have no vertex subset that induces a P4 or a C4 [8]. In
contrast to split graphs, any non-increasing degree ordering of a trivially perfect
graph is a uco [10]. In fact, this is a one-to-one correspondence: a non-increasing
sorted degree sequence of a graph is a uco i� the graph is trivially perfect [10].

In external memory this can be veri�ed using TFP by adapting the algorithm
in [10]. After computing a non-increasing degree ordering γ the algorithm relabels
the edges of the graph according to γ and sorts them. Now we iterate over the
vertices in non-descending order of γ, process for each vertex vi its received
messages and relay further messages forward in time.

Initially all vertices are labeled with 0. Then, at step i vertex vi checks that
all adjacent vertices N(vi) have the same label as vi. After this, vi relabels
each vertex u ∈ N(vi) with its own index i and is then removed from the
graph. In the external memory setting we cannot access labels of vertices and
relabel them on-the-�y but rather postpone the comparison of the labels to the
adjacent vertices instead. To do so, vi forwards its own label `(vi) to u ∈ H(vi)
by sending two messages 〈u, vi, `(vi)〉 and 〈u, vi, i〉 to u, signaling that u should
compare its own label to vi's label `(vi) and then update it to i. Since the label
of any adjacent vertex is changed after processing a vertex, when arriving at
vertex vj an odd number of messages will be targeted to vj , where the last
one corresponds to its actual label at step j. Then, after collecting all received
labels, we compare disjoint consecutive pairs of labels and check whether they
match. In the membership case, we do not �nd any mismatch and return γ as
the YES-certi�cate. Otherwise, we have to return a P4 or C4.

In the description of [10] the authors stop at the �rst anomaly where vi
detects a mismatch in its own label and one of its neighbors. We simulate the
same behavior by writing out every anomaly we �nd, e.g. that vj does not have
the expected label of vi via an entry 〈vi, vj , k〉 where k denotes the label of vj .
After sorting the entries, we �nd the earliest anomaly 〈vi, vj , k〉 with the largest
label k of vi's neighbors. Since vj received the label k from vk, but vi did not, it is
clear that vk is not universal in its connected component in G[{vk, vk+1, . . . , vn}]
and we thus will return a P4 or C4. Note that (vk, vj , vi) already constitutes a P3

where deg(vk) ≥ deg(vj), because vj received the label k. Since vj is adjacent to
both vk and vi and deg(vk) ≥ deg(vj), there must exist a vertex x ∈ N(vk) where
{vj , x} /∈ E. Thus, G[{vk, vj , vi, x}] is a P4 if {vi, x} /∈ E and a C4 otherwise.
Finding x and determining whether the forbidden subgraph is a P4 or a C4

requires scanning O(1) adjacency lists in O(scan(n)) I/Os.
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Proposition 4. Verifying that a non-increasing degree ordering γ = (v1, . . . , vn)
of a graph G with n vertices and m edges is a universal-in-a-component-ordering
requires O(sort(m)) I/Os.

Proof. Every vertex vi receives exactly two messages per neighbor in L(vi) and
veri�es that all consecutive pairs of labels match. Then, either the label i is sent
to each higher ranked neighbor of H(vi) via TFP or it is veri�ed that γ is not a
uco. Since at most O(m) messages are inserted, the resulting overall complexity
is O(sort(m)) I/Os. Correctness follows from [10] since the adapted algorithm
performs the same operations but only delays the label comparisons. ut

We again summarize our results in Theorem 3.

Theorem 3. A graph G can be certi�ed whether it is a trivially perfect graph
or not in O(sort(n+m)) I/Os. In the membership case the algorithm returns
the universal-in-a-component ordering γ as the YES-certi�cate, and otherwise it
returns an O(1)-size NO-certi�cate.

3.4 Certifying Bipartite Chain Graphs in External Memory

Bipartite chain graphs are bipartite graphs where one part of the bipartition
has an nno [16] similar to threshold graphs. Its forbidden induced subgraphs are
2K2, C3 and C5. By de�nition, bipartite chain graphs are bipartite graphs which
therefore requires I/O-e�cient bipartiteness testing.

We follow the linear time internal memory approach of [10] with slight ad-
justments to accommodate the external memory setting. First, we check whether
the input is indeed a bipartite graph. Instead of using breadth-�rst search which
is very costly in external memory, even for constrained settings [2], we can use a
more e�cient approach with spanning trees which is presented in the following in
Lemma 1. Note that, computing a spanning forest only requires O(sort(n+m))
I/Os with high probability [5] and is therefore no real restriction to Lemma 1.
In case the input is not connected, we simply return two edges of two di�erent
components as the 2K2. If the graph is connected, we proceed to verify that the
graph is bipartite and return a NO-certi�cate in the form of a C3, C5 or 2K2 in
case it is not. In order to �nd a C3, C5 or 2K2 some modi�cations to Lemma 1
are necessary. Essentially, the algorithm instead returns a minimum odd cycle
that is built from T and a single non-tree edge. Due to minimality we can then
�nd a 2K2. The result is summarized in Corollary 1 and proven in the full version
of the paper [14].

Then, it remains to show that each side of the bipartition has an nno. Let U
be the larger side of the partition. By [11] it su�ces to show that the input is a
chain graph if and only if the graph obtained by adding all possible edges with
both endpoints in U is a threshold graph. Instead of materializing the mentioned
threshold graph, we implicitly represent the adjacencies of vertices in U to retain
the same I/O-complexity and apply Theorem 2 using O(sort(n+m)) I/Os.
If the input is bipartite but not chain, we repeatedly delete vertices that are
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connected to all other vertices of the other side and the resulting isolated vertices,
similar to Subsection 3.3 and [10]. After this, the vertex v with highest degree
has a non-neighbor y in the other partition. By similar arguments y is adjacent
to another vertex z that is adjacent to a vertex x where {v, x} /∈ E [10]. As such
G[{v, y, z, x}] is a 2K2 and can be found in O(scan(n)) I/Os and returned as
the NO-certi�cate.

Lemma 1. A graph G can be certi�ed whether it is a bipartite graph or not in
O(sort(n+m)) I/Os, given a spanning forest of the input graph. In the mem-
bership case the algorithm returns a bipartition (U, V \U) as the YES-certi�cate,
and otherwise it returns an odd-length cycle as the NO-certi�cate.

Proof. In case there are multiple connected components, we operate on each
individually and thus assume that the input is connected. Let T be the edges of
the spanning tree and E \T the non-tree edges. Any edge e ∈ E \T may produce
an odd cycle by its addition to T . In fact, the input is bipartite if and only if
T ∪ {e} is bipartite for all e ∈ E \ T 4. We check whether an edge e = {u, v}
closes an odd cycle in T by computing the distance dT (u, v) of its endpoints in T .
Since this is required for every non-tree edge E\T , we resort to batch-processing.
Note that T is a tree and hence after choosing a designated root r ∈ V it holds
that dT (u, v) = dT (u,LCAT (u, v)) + dT (v,LCAT (u, v)) where LCAT (u, v) is
the lowest common ancestor of u and v in T . Therefore for every edge E \
T we compute its lowest common ancestor in T using O((m/n) · sort(n)) =
O(sort(m)) I/Os [5].

Additionally, for each vertex v ∈ V we compute its depth in T in O(sort(m))
I/Os using Euler Tours [5] and inform each incident edge of this value by a few
scanning and sorting steps. Similarly, each edge e = {u, v} is provided of the
depth of LCAT (u, v). Then, after a single scan over E \ T we compute dT (u, v)
and check if it is even. If any value is even, we return the odd cycle as a NO-
certi�cate or a bipartition in T as the YES-certi�cate. Both can be computed
using Euler Tours in O(sort(m)) I/Os. ut

Corollary 1. If a connected graph G contains a C3, C5 or 2K2 then any of these
subgraphs can be found in O(sort(n+m)) I/Os given a spanning tree of G.

We summarize our �ndings for bipartite chain graphs in Theorem 4.

Theorem 4. A graph G can be certi�ed whether it is a bipartite chain graph or
not in O(sort(n+m)) I/Os with high probability. In the membership case the
algorithm returns the bipartition (U, V \ U) and nested neighborhood orderings
of both partitions as the YES-certi�cate, and otherwise it returns an O(1)-size
NO-certi�cate.

Proof. Computing a spanning tree T requires O(sort(n+m)) I/Os with high
probability by an external memory variant of the Karger, Klein and Tarjan
minimum spanning tree algorithm [5]. By Corollary 1 we �nd a C3, C5 or 2K2

if the input is not bipartite or not connected. We proceed by checking the nno's
of both partitions in O(sort(n+m)) I/Os using Theorem 2. ut
4 Since T is bipartite, one can think of T as a representation of a 2-coloring on T .
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Fig. 1: Running times of the certifying algorithms for split (left) and threshold
graphs (right) for di�erent random graph instances. The black vertical lines
depict the number of elements that can concurrently be held in internal memory.

4 Experimental Evaluation

We implemented our external memory certifying algorithms for split and thresh-
old graphs in C++ using the STXXL library [7]. To provide a comparison of
our algorithms, we also implemented the internal memory state-of-the-art algo-
rithms by Heggernes and Kratsch [10]. STXXL o�ers external memory versions
of fundamental algorithmic building blocks like scanning, sorting and several
data structures. Our benchmarks are built with GNU g++-10.3 and executed
on a machine equipped with an AMD EPYC 7302P processor and 64 GB RAM
running Ubuntu 20.04 using six 500 GB solid-state disks.

In order to validate the predicted scaling behaviour we generate our instances
parameterized by n. For yes-instances of split graphs we generate a split parti-
tion (K, I) with |K| = n/10 and add each possible edge {u, v} with probability
1/4 for u ∈ I and v ∈ K. Analogously, yes-instances of threshold graphs are gen-
erated by repeatedly adding either isolated or universal vertices with probability
9/10 and 1/10, respectively. We additionally attempt to generate no-instances
by adding O(1) many random edges to the yes-instances. In a last step, we
randomize the vertex indices to remove any biases of the generation process.

In Figure 1 we present the running times of all algorithms on multiple yes-
and no-instances. It is clear that the performance of both external memory
algorithms is not impacted by the main memory barrier while the running time
of their internal memory counterparts already increases when at least half the
main memory is used. This e�ect is ampli�ed immensely after exceeding the size
of main memory for split graphs, Figure 1.

Certifying the produced no-instances of split graphs seems to require less
time than their corresponding unmodi�ed yes-instances as the algorithm typi-
cally stops early. Furthermore, due to the low data locality of the internal mem-
ory variant it is apparent that the external memory algorithm is superior for the
yes-instances. The performance on both yes- and no-instances is very similar in
external memory. This is in part due to the fact that the common relabeling step
is already relatively costly. For threshold graphs, however, the external memory
variant outperforms the internal memory variant due to improved data locality.
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5 Conclusions

We have presented the �rst I/O-e�cient certifying recognition algorithms for
split, threshold, trivially perfect, bipartite and bipartite chain graphs. Our algo-
rithms require O(sort(n+m)) I/Os matching common lower bounds for many
algorithms in external memory. In our experiments we show that the algorithms
perform well even for graphs exceeding the size of main memory.

Further, it would be interesting to extend the scope of certifying recognition
algorithms to more graph classes for the external memory regime.
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